Use of Fast Fourier Transform 'H Nuclear Magnetic Resonance Spectroscopy to Determine the Helical Sense of Pyridine Dinucleotides

By RAMASWAMY H. **SARMA*** and RICHARD J.**MYNOTT**

(Department of Chemistry, State University of New York at Albany, Albany, New York **12222)**

Summary Fast Fourier transform techniques have been used to determine the ¹H chemical shifts of pyridine coenzymes in the concentration range $0.4-0.001M$ and the data have been used to determine the helical sense of the dinucleotides.

MOLECULAR models show that the most probable? helical arrangements which the dinucleotides (I) — (IV) can assume are as follows. (a) The backbone of the dinucleotide makes a turn of a right-handed helix *so* that the B side (VII) of adenine interacts with the **A** side of pyridine (V). We designate this conformation as *(P)-B-anti-A -syn,* (P) describing the chirality, the first letter B followed by *anti* designating the side of adenine facing the pyridine and the conformation of adenine with respect to its glycosidic linkage, the second letter **A** followed by *syn* designating the side of pyridine facing the adenine and the conformation of the pyridine with respect to its glycosidic linkage. **An** alternate conformation *(P) -B-anti-B-syn* can be generated by torsional variation of the backbone. (b) The backbone of the dinucleotide makes a turn of a left-handed helix so that the **A** side of adenine (VIII) stacks over the B side of pyridine (VII). This conformation is designated as *(M')-A-anti-B-syn.*^{*} An alternate conformation *(M')-Aanti-A-syn* can also be created by torsional variation of the backbone.

In the (M') -helical system, the B side of adenine resides outside the helix and the entire B surface and the nearby environment are free from substituents from the D-ribose fragment (VII). Hence, if a dimer is formed between two *(M')* helices one would expect the two B surfaces of the two molecules involved to stack in parallel planes and cause considerable ring-current upfield shifts of the adenine 2-H, **8-H,** and 1'-H and relatively small upfield shifts of adenine $2'$ -H and $3'$ -H. In the (P) -helical system, the A side of adenine lies outside the helix and the neighbourhood of this side is highly crowded from substituents originating from the D-ribose (VIII). This is particularly so for β -TPN (I) and β -TPNH (II) where the bulky 2'-phosphate group will hinder a free close overlap between two **A** sides, should a dimer form between the two *(P)* helices. The ring-current upfield shifts caused by such stacking interactions between

Po;- ? Jardetzky and Wade- Jardetzkyl have proposed **64** possibilities. 1: *(M')* is used rather than *(M)* because the two helical forms discussed here are not mirror images.

two (P) helices will be considerably smaller compared to those involving two *(M')* helices.

Fast Fourier transform techniques enabled us to obtain high quality ¹H n.m.r. spectra of β -TPN, β -DPN (III), β -TPNH and β -DPNH (IV) in the concentration range centration profiles because in the (M') -helices, as described earlier, the B surface of adenine **(VII)** (whose environment is free from substituents from ribose) is involved in stacking interactions in dimer formation. We have constructed the most probable stacking arrangement between the

TABLE *The hovizontal* (z) *and in plane* **(p)** *axis for the protons in* JS-TPN *dimers shown in Figure* **2.**

			TABLE The horizontal (z) and in plane (p) axis for the protons in β -TPN dimers shown in Figure 2.			
				Ring current zone ^e		
Protons		z/A a	Observed $\Delta\delta/Hz^b$	Adenined	Benzene ^e	Benzene ^r
$A-2-H$	$\frac{p/\text{A}}{3\cdot 0}$	$3-6$	-16.0	s	-20 Hz	-8.1 Hz
$A-8-H$	5.0	$3-6$	0.0	n	n	n
$A-I' - H$	4.8	3·3	0.0	n	n	n
$A-2'$ -H	5.1	2.5	$+7.5$		$+6.2$ Hz	$+2.2$ Hz
$A-3'$ -H	7.5	3.4	$+5.0$			$+1$ Hz

A-3'-H $7 \cdot 5$ $3 \cdot 4$ $+5 \cdot 0$ d $+1$ Hz

A Measured values for p and z are accurate only to \pm 0.5 Å. b — refers to upfield shifts, $+$ refers to downfield shifts. c s = shield-

ing, n = neutral, d = deshielding. d

0.001-0.4~. Contrary to Jardetzky and Wade- Jardetzky's report,¹ the chemical shifts of pyridine coenzymes show a concentration dependence (Figure **1).** Significant concentration-dependent perturbations of adenine resonances suggest the formation of dimers in which intermolecular stacking occurs between juxtaposed adenine fragments. The pair β -TPN and β -DPN shows very dramatic difference in their concentration profiles and for the first time, we have been able to observe experimentally shifts to lower fields originating from stacking interactions (Figure **1). If** both β -DPN and β -TPN existed as (M') -helices one would not expect them to show any differences in their con-

FIGURE 1. Concentration dependence of the chemical shifts of FIGURE 1. Concentration dependence of the chemical ships of
 β -TPN (top) and β -DPN (bottom). $(A = adening, P = \text{pyridine}).$
Chemical shifts are expressed in Hz (100 MHz) downfield from
Me_aN+Cl-. The previous assignment¹ of AC(**of** p-TPN *was found to be erroneous.*

adenine fragments of two *(P)-B-anti-A -syn* molecules of p-TPN (Figure **2),** and experimental and theoretical data for this model are in the Table. Given the uncertainty involved in the measurements of z and p (Table) and the assumptions involved in the calculations. $2-4$ the agreement

FIGURE **2.** *Geometric orientation between the two adenine fragments in the dimer of the (P)-B-anti-A-syn conformation of* β *-TPN. Isoshielding lines* (z = **3-4** A) *are from ref.* **2.** *Ribose in the diagram appears puckered, but no puckering is intended other than to show the various atoms of the ribose.*

of the theoretically predicted direction and magnitude of the shifts to the corresponding observed ones is good. Such an agreement enables us to conclude that a single molecule of β -TPN exists in the (P) -helical form and dimerization involve two (P)-helices. The data do not indicate whether the molecular geometry of β -TPN is *(P)-B-anti-A -syn* or *(P)-B-anti-B-syn.* **In** the case of β -TPNH similar treatment of concentration data leads to the conclusion that the molecule may exist as *(P)-B-anti-Banti* or *(P)-B-anti-A-anti.* **In** view **of** the present findings

J.C.S. CHEM. COMM., **1972 979**

one must conclude that the concept of a slow exchange between the *(P)* and (M')-helices originally proposed by Patel⁵ and later adopted by Sarma and Kaplan⁶ is not true at least for β -TPNH and β -TPN.'

This research was supported by grants from the National Science Foundation and the National Institutes *of* Health.

(Received, 22nd May 1972; Corn. 871.)

-
-
- O. Jardetzky and N. G. Wade-Jardetzky, *J. Biol. Chem.*, 1966, 241, 85.
C. Giessner-Prettre and B. Pullman, *J. Theor. Biol.*, 1970, 27, 341.
C. E. Johnson, jun., and F. A. Bovey, *J. Chem. Phys.*, 1958, 29, 1012.
C. W. Ha
-
-
- R. H. Sarma and N. 0. Kaplan, *Biochemistry,* **1970, 9, 539.** *ti* D. J. Patel, *Nature,* **1969, 221, 1239.**

⁷Data given by N. Oppenheimer, L. Arnold, and N. 0. Kaplan *(Proc. Natl. Acad. Sci. U.S.A.,* **1971, 68, 3200)** demonstrate that the evidence suggested for a slow exchange was due to an erroneous interpretation which resulted from the inherent poor homogeneity of the first **220** MHz n.m.r. spectrometer.